Data Collection
& Extraction
Scale your data collection operations with high-performance proxy solutions. Perfect for web scraping, API data gathering, and automated large-scale data extraction projects.
Records/Day
Success Rate
Collection
Data Collection
Benefits
Unlock the power of large-scale data collection with our high-performance proxy solutions designed for data engineers and researchers.
High-Speed Collection
Collect massive amounts of data quickly with parallel processing and optimized proxy connections for maximum throughput.
Bypass Restrictions
Overcome IP blocks, rate limits, and geo-restrictions to access any data source without interruption or detection.
Global Data Access
Access data from any geographic location worldwide to gather comprehensive datasets and regional information.
Scalable Infrastructure
Scale your data collection operations from thousands to millions of records with our robust proxy infrastructure.
Records Collected Daily
Collection Success Rate
Continuous Operation
Advanced Collection Features
Everything you need for large-scale data collection operations with enterprise-grade performance and reliability.
Smart Rotation
Intelligent IP rotation algorithms to maintain high collection rates while avoiding detection and blocks.
High Throughput
Optimized for maximum data collection speed with concurrent connections and parallel processing capabilities.
Data Filtering
Advanced filtering and validation to ensure you collect only high-quality, relevant data for your projects.
Bulk Export
Export collected data in multiple formats including CSV, JSON, XML, and direct database integration.
Real-Time Monitoring
Monitor collection progress, success rates, and performance metrics in real-time with detailed analytics.
Custom Configuration
Flexible configuration options for headers, user agents, cookies, and custom collection parameters.
Data Collection Challenges
Overcome the most common obstacles in large-scale data collection with our specialized proxy solutions.
Rate Limiting & Blocks
Problem:
Websites implement aggressive rate limiting and IP blocking to prevent automated data collection, severely limiting collection speed and volume.
Solution:
Use rotating residential proxies to distribute requests across thousands of IP addresses, bypassing rate limits and maintaining high collection speeds.
Anti-Bot Detection
Problem:
Modern websites use sophisticated anti-bot systems that detect and block automated collection tools based on behavior patterns and fingerprints.
Solution:
Employ residential IPs with realistic user-agent rotation and human-like behavior patterns to appear as legitimate users.
Scale & Performance
Problem:
Collecting large volumes of data requires massive infrastructure and can be limited by single IP address throughput and connection limits.
Solution:
Scale horizontally with thousands of concurrent proxy connections to achieve enterprise-level data collection performance.
Geographic Restrictions
Problem:
Many data sources are geo-restricted or show different content based on location, limiting access to comprehensive global datasets.
Solution:
Access geo-restricted data with location-specific proxies from over 100 countries to collect complete global datasets.
Collection
Methodology
Follow our proven 4-step methodology to successfully implement and scale large-scale data collection operations.
Infrastructure Setup
Configure high-performance proxy infrastructure with optimal routing, load balancing, and failover mechanisms for reliable data collection.
Collection Strategy
Implement intelligent collection strategies with smart rotation, rate limiting, and target-specific configurations for maximum efficiency.
Scale & Execute
Scale collection operations to handle millions of records with parallel processing, data validation, and quality assurance.
Monitor & Optimize
Continuously monitor collection performance, optimize success rates, and maintain data quality with real-time analytics and alerts.
Success Story
See how data intelligence companies scale their data collection operations to process 50M+ records monthly with 99.7% success rate.
The Challenge
A data intelligence company needed to collect massive amounts of product data from e-commerce sites for their AI models. Their existing infrastructure was limited to 1M records per month due to IP blocks and rate limiting, far below their 50M record requirement.
The Solution
By implementing our enterprise proxy network with intelligent rotation and parallel processing, the company achieved their 50M monthly target with 99.7% success rate, enabling their AI models to train on comprehensive, real-time market data.
"NyronProxies transformed our data collection capabilities from 1M to 50M records per month. The reliability and performance exceeded our expectations, enabling us to build better AI models with comprehensive market data."
Chief Technology Officer
Data Intelligence Company
Records Collected
Speed Increase
Success Rate
Implementation
Key Results
Collection Scope
Easy Integration
Get started quickly with our comprehensive code examples and integration guides for large-scale data collection operations.
Multiple Languages
Support for Python, Node.js, PHP, and more
High Performance
Optimized for maximum collection throughput
Enterprise Grade
Robust error handling and retry mechanisms
import asyncio
import aiohttp
from concurrent.futures import ThreadPoolExecutor
import pandas as pd
import time
class DataCollector:
def __init__(self, proxy_pool):
self.proxy_pool = proxy_pool
self.session_pool = []
self.collected_data = []
async def create_sessions(self, pool_size=100):
"""Create a pool of aiohttp sessions with different proxies"""
for i in range(pool_size):
proxy = self.proxy_pool[i % len(self.proxy_pool)]
connector = aiohttp.TCPConnector(limit=10)
session = aiohttp.ClientSession(
connector=connector,
timeout=aiohttp.ClientTimeout(total=30),
headers={'User-Agent': self.get_random_user_agent()}
)
session._proxy = f"http://{proxy['user']}:{proxy['pass']}@{proxy['host']}:{proxy['port']}"
self.session_pool.append(session)
async def collect_batch(self, urls_batch):
"""Collect data from a batch of URLs concurrently"""
tasks = []
for i, url in enumerate(urls_batch):
session = self.session_pool[i % len(self.session_pool)]
task = self.collect_single(session, url)
tasks.append(task)
results = await asyncio.gather(*tasks, return_exceptions=True)
return [r for r in results if not isinstance(r, Exception)]
async def collect_single(self, session, url):
"""Collect data from a single URL"""
try:
async with session.get(url, proxy=session._proxy) as response:
if response.status == 200:
html = await response.text()
data = self.parse_data(html, url)
return data
except Exception as e:
print(f"Error collecting {url}: {e}")
return None
def parse_data(self, html, url):
"""Parse data from HTML - implement your parsing logic"""
# Your parsing logic here
return {
'url': url,
'title': 'Extracted Title',
'price': 'Extracted Price',
'timestamp': time.time()
}
async def run_collection(self, urls, batch_size=1000):
"""Run large-scale data collection"""
await self.create_sessions()
for i in range(0, len(urls), batch_size):
batch = urls[i:i + batch_size]
batch_results = await self.collect_batch(batch)
self.collected_data.extend(batch_results)
print(f"Collected batch {i//batch_size + 1}, Total: {len(self.collected_data)}")
# Rate limiting between batches
await asyncio.sleep(1)
# Save to DataFrame
df = pd.DataFrame(self.collected_data)
return df
# Usage
proxy_pool = [
{'host': 'proxy1.nyronproxies.com', 'port': 8000, 'user': 'username', 'pass': 'password'},
{'host': 'proxy2.nyronproxies.com', 'port': 8000, 'user': 'username', 'pass': 'password'},
# Add more proxies...
]
urls = ['https://example.com/page1', 'https://example.com/page2'] # Your target URLs
collector = DataCollector(proxy_pool)
# Run collection
async def main():
df = await collector.run_collection(urls)
df.to_csv('collected_data.csv', index=False)
print(f"Collected {len(df)} records")
asyncio.run(main())
const axios = require('axios');
const cheerio = require('cheerio');
const HttpsProxyAgent = require('https-proxy-agent');
const fs = require('fs').promises;
class DataPipeline {
constructor(proxyPool, concurrency = 50) {
this.proxyPool = proxyPool;
this.concurrency = concurrency;
this.collectedData = [];
this.activeRequests = 0;
this.requestQueue = [];
}
createProxyClient(proxy) {
const proxyUrl = `http://${proxy.user}:${proxy.pass}@${proxy.host}:${proxy.port}`;
return axios.create({
httpsAgent: new HttpsProxyAgent(proxyUrl),
timeout: 30000,
headers: {
'User-Agent': this.getRandomUserAgent()
}
});
}
async processQueue() {
while (this.requestQueue.length > 0 && this.activeRequests < this.concurrency) {
const request = this.requestQueue.shift();
this.activeRequests++;
this.processRequest(request)
.finally(() => {
this.activeRequests--;
this.processQueue(); // Process next in queue
});
}
}
async processRequest({ url, proxy, retries = 3 }) {
const client = this.createProxyClient(proxy);
try {
const response = await client.get(url);
const data = this.parseData(response.data, url);
if (data) {
this.collectedData.push(data);
console.log(`Collected: ${url} (Total: ${this.collectedData.length})`);
}
} catch (error) {
if (retries > 0) {
console.log(`Retrying ${url}, attempts left: ${retries}`);
// Add back to queue with different proxy
const newProxy = this.proxyPool[Math.floor(Math.random() * this.proxyPool.length)];
this.requestQueue.push({ url, proxy: newProxy, retries: retries - 1 });
} else {
console.error(`Failed to collect ${url}: ${error.message}`);
}
}
}
parseData(html, url) {
try {
const $ = cheerio.load(html);
return {
url: url,
title: $('title').text().trim(),
description: $('meta[name="description"]').attr('content') || '',
price: $('.price').text().trim(),
timestamp: new Date().toISOString()
};
} catch (error) {
console.error(`Parse error for ${url}: ${error.message}`);
return null;
}
}
async collect(urls) {
console.log(`Starting collection of ${urls.length} URLs`);
// Add all URLs to queue with random proxy assignment
urls.forEach(url => {
const proxy = this.proxyPool[Math.floor(Math.random() * this.proxyPool.length)];
this.requestQueue.push({ url, proxy });
});
// Start processing
this.processQueue();
// Wait for completion
return new Promise((resolve) => {
const checkCompletion = () => {
if (this.requestQueue.length === 0 && this.activeRequests === 0) {
resolve(this.collectedData);
} else {
setTimeout(checkCompletion, 1000);
}
};
checkCompletion();
});
}
async exportData(filename = 'collected_data.json') {
await fs.writeFile(filename, JSON.stringify(this.collectedData, null, 2));
console.log(`Data exported to ${filename}`);
}
getRandomUserAgent() {
const userAgents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36'
];
return userAgents[Math.floor(Math.random() * userAgents.length)];
}
}
// Usage
const proxyPool = [
{ host: 'proxy1.nyronproxies.com', port: 8000, user: 'username', pass: 'password' },
{ host: 'proxy2.nyronproxies.com', port: 8000, user: 'username', pass: 'password' },
// Add more proxies...
];
const urls = [
'https://example1.com/data',
'https://example2.com/data',
// Add your target URLs...
];
const pipeline = new DataPipeline(proxyPool, 100); // 100 concurrent requests
pipeline.collect(urls)
.then(data => {
console.log(`Collection completed: ${data.length} records`);
return pipeline.exportData();
})
.catch(console.error);
<?php
require_once 'vendor/autoload.php';
use GuzzleHttp\Client;
use GuzzleHttp\Pool;
use GuzzleHttp\Psr7\Request;
use Symfony\Component\DomCrawler\Crawler;
class DataHarvester {
private $proxyPool;
private $concurrency;
private $collectedData = [];
private $clients = [];
public function __construct($proxyPool, $concurrency = 50) {
$this->proxyPool = $proxyPool;
$this->concurrency = $concurrency;
$this->initializeClients();
}
private function initializeClients() {
foreach ($this->proxyPool as $index => $proxy) {
$proxyUrl = "http://{$proxy['user']}:{$proxy['pass']}@{$proxy['host']}:{$proxy['port']}";
$this->clients[$index] = new Client([
'proxy' => $proxyUrl,
'timeout' => 30,
'headers' => [
'User-Agent' => $this->getRandomUserAgent()
],
'verify' => false
]);
}
}
public function harvest($urls) {
$requests = $this->createRequests($urls);
$pool = new Pool($this->getRandomClient(), $requests, [
'concurrency' => $this->concurrency,
'fulfilled' => [$this, 'onFulfilled'],
'rejected' => [$this, 'onRejected']
]);
$promise = $pool->promise();
$promise->wait();
return $this->collectedData;
}
private function createRequests($urls) {
$requests = [];
foreach ($urls as $url) {
$requests[] = new Request('GET', $url);
}
return $requests;
}
public function onFulfilled($response, $index) {
$body = $response->getBody()->getContents();
$url = $response->getHeaderLine('X-Request-URL') ?: 'unknown';
$data = $this->parseData($body, $url);
if ($data) {
$this->collectedData[] = $data;
echo "Collected: {$url} (Total: " . count($this->collectedData) . ")\n";
}
}
public function onRejected($reason, $index) {
echo "Request failed: " . $reason->getMessage() . "\n";
}
private function parseData($html, $url) {
try {
$crawler = new Crawler($html);
$title = $crawler->filter('title')->count() > 0
? $crawler->filter('title')->text()
: '';
$description = $crawler->filter('meta[name="description"]')->count() > 0
? $crawler->filter('meta[name="description"]')->attr('content')
: '';
$price = $crawler->filter('.price, .cost, .amount')->count() > 0
? $crawler->filter('.price, .cost, .amount')->first()->text()
: '';
return [
'url' => $url,
'title' => trim($title),
'description' => trim($description),
'price' => trim($price),
'timestamp' => date('Y-m-d H:i:s'),
'data_size' => strlen($html)
];
} catch (Exception $e) {
echo "Parse error for {$url}: " . $e->getMessage() . "\n";
return null;
}
}
private function getRandomClient() {
$randomIndex = array_rand($this->clients);
return $this->clients[$randomIndex];
}
private function getRandomUserAgent() {
$userAgents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36'
];
return $userAgents[array_rand($userAgents)];
}
public function exportToCSV($filename = 'harvested_data.csv') {
if (empty($this->collectedData)) {
echo "No data to export\n";
return;
}
$fp = fopen($filename, 'w');
// Write headers
fputcsv($fp, array_keys($this->collectedData[0]));
// Write data
foreach ($this->collectedData as $row) {
fputcsv($fp, $row);
}
fclose($fp);
echo "Data exported to {$filename}\n";
}
public function getStats() {
return [
'total_records' => count($this->collectedData),
'unique_urls' => count(array_unique(array_column($this->collectedData, 'url'))),
'average_size' => array_sum(array_column($this->collectedData, 'data_size')) / count($this->collectedData),
'collection_time' => date('Y-m-d H:i:s')
];
}
}
// Usage
$proxyPool = [
['host' => 'proxy1.nyronproxies.com', 'port' => 8000, 'user' => 'username', 'pass' => 'password'],
['host' => 'proxy2.nyronproxies.com', 'port' => 8000, 'user' => 'username', 'pass' => 'password'],
// Add more proxies...
];
$urls = [
'https://example1.com/products',
'https://example2.com/catalog',
// Add your target URLs...
];
$harvester = new DataHarvester($proxyPool, 100);
echo "Starting data harvest...\n";
$data = $harvester->harvest($urls);
$harvester->exportToCSV('enterprise_data.csv');
$stats = $harvester->getStats();
echo "Harvest completed:\n";
echo "Records collected: {$stats['total_records']}\n";
echo "Unique URLs: {$stats['unique_urls']}\n";
echo "Average page size: " . round($stats['average_size']) . " bytes\n";
?>
Data Collection FAQ
Get answers to the most common questions about using proxies for large-scale data collection and automated extraction operations.
Ready to Scale Your Data Collection?
Join enterprise clients who trust our proxy infrastructure for collecting millions of records daily with 99.7% success rates.